

CERTIFICATION

AOAC® Performance TestedSM

Certificate No.

050902

The AOAC Research Institute hereby certifies the test kit known as:

BAX® System Real-Time PCR Assay for Vibrio cholera, parahaemolyticus, and vulnificus

manufactured by

Hygiena 2 Boulden Circle New Castle, DE 19720 USA

This method has been evaluated in the AOAC® *Performance Tested Methods*SM Program and found to perform as stated by the manufacturer contingent to the comments contained in the manuscript. This certificate means that an AOAC® Certification Mark License Agreement has been executed which authorizes the manufacturer to display the AOAC *Performance Tested*SM certification mark along with the statement - "THIS METHOD'S PERFORMANCE WAS REVIEWED BY AOAC RESEARCH INSTITUTE AND WAS FOUND TO PERFORM TO THE MANUFACTURER'S SPECIFICATIONS" - on the above mentioned method for a period of one calendar year from the date of this certificate (December 4, 2019 – December 31, 2020). Renewal may be granted at the end of one year under the rules stated in the licensing agreement.

Scott Coates, Senior Director

December 4, 2019

Date

Signature for AOAC Research Institute

2275 Research Blvd., Suite 300, Rockville, MD 20850-3250 USA * Telephone: +1-301-924-7077 * Fax: +1-301-924-7089

Internet e-mail: aoacri@aoac.org * World Wide Web Site: http://www.aoac.org

METHOD AUTHORS

ORIGINAL MODIFICATION: Tim Dambaugh, Anita Wright, Monica Kingsley, Chris Malota, Bidget Andaloro, Dawn Fallon, Dainel Delduco, George Tice, and Morgan Wallace MODIFICATION JULY 2013: Steve Hoelzer, F. Morgan Wallace, Lois Fleck, Deana DiCosimo, Jacqueline Harris, Bridget Andaloro,

Andrew Farnum, Eugene Davis, and Jeff Rohrbeck

SUBMITTING COMPANY

ESL Building 400

DuPont

Route 141 & Henry Clay Road Wilmington, DE 19880-0400

CURRENT SPONSOR

Hygiena 2 Boulden Circle New Castle, DE 19720

USA

KIT NAME(S)

DuPont[™] BAX® System Real-Time PCR Assay for *Vibrio cholera*, parahaemolyticus, and vulnificus
March 01, 2017, BAX® System Real-Time PCR Assay for *Vibrio cholera*, parahaemolyticus, and vulnificus

CATALOG NUMBERS

BAX® Assay KIT2010 (D12863877)

INDEPENDENT LABORATORY

Texas State Department of Health Services Consumer Microbiology Team Austin, TX 78756 USA

AOAC EXPERTS AND PEER REVIEWERS

Thomas Hammack¹, Michael Brodsky², Joseph Odumeru³, Yi Chen⁴

- ¹ US FDA, CFSAN, College Park, MD, USA
- ² Brodsky Consultants, Thornhill, Ontario, CANADA
- ³ University of Guelph, Guelph, Ontario, CANADA
- ⁴ US FDA, CFSAN, College Park, MD, USA: July 2013 Modification only

APPLICABILITY OF METHOD

Target organism – Vibrio cholera, parahaemolyticus, and vulnificus

Matrices - (25 g) - Shrimp, oysters, tuna, and scallops

Performance claims - Sensitivity and specificity equivalent to the official FDA-BAM culture-based method.

REFERENCE METHOD

U.S. Food and Drug Administration, FDA Bacteriological Analytical Manual, http://www.cfsan.fda.gov/~ebam/bam-9.html, date of access 2/15/09. (4)

ORIGINAL CERTIFICATION DATE

May 10, 2009

CERTIFICATION RENEWAL RECORD

Renewed annually through December 2020

METHOD MODIFICATION RECORD

- 1. July 2013
- 2. March 2017 Level 1
- 3. December 2017 Level 1 Renewal Modification
- 4. May 2019 Level 1
- 5. December 2019 Level 1 Renewal Modification

SUMMARY OF MODIFICATION

- 1. Addition of Thermal Block for automated sample lysis
- 2. Name change from DuPont Nutrition & Health to Qualicon Diagnostics LLC., a Hygiena company
- 3. Inserts, manuals, and labels updated to Hygiena
- 4. Editorial updates to inserts and corporate address
- 5. Editorial/clerical changes.

Under this AOAC® *Performance Tested*SM License Number, 050902 this method is distributed by: NONE

Under this AOAC® *Performance Tested*^{5M} License Number, 050902 this method is distributed as:
NONE

PRINCIPLE OF THE METHOD (1)

The BAX® system uses the Polymerase Chain Reaction (PCR) to amplify specific DNA fragments, which are stable and unaffected by growth conditions [3]. Each fragment is a genetic sequence that is unique to the targeted organism, thus providing a highly reliable indicator that the organism is present. The BAX® system simplifies the PCR process by combining the requisite PCR reagents into a stable, dry, manufactured tablet already packaged inside the PCR tubes. After hydrating these tablets with prepared samples, the tubes remain sealed to reduce the potential for contamination.

In a typical PCR application, sample DNA is combined with DNA polymerase, nucleotides and primers that are specific for a given nucleotide sequence. The mixture then undergoes a series of timed heating and cooling cycles. Heating denatures the DNA, separating it into single strands. As the mixture cools, the primers recognize and anneal (bind) to the targeted DNA sequence. DNA polymerase then uses nucleotides to extend the primers, thus creating two copies of the targeted fragment (amplification). Repeating cycles of denaturing, annealing and extending produces an exponential increase in the number of target DNA fragments, creating millions of copies in a very short time. If the target sequence is not present, no detectable amplification takes place [2]. Inhibitors to PCR are present in some food matrices. In particular, phenolic compounds found in some spices and other plant-based materials such as high purity cocoa can cause the PCR reaction to shut down. Because of this, each BAX reagent tablet is formulated with a low level control DNA molecule and associated primers. This Internal Positive Control (INPC) must be shown to amplify in the absence of specific pathogen target amplification product for the BAX ** instrument to report a negative result. In the absence of any target or INPC associated product, the instrument reports an indeterminate result.

The BAX® system PCR tablets used in real-time assays also contain multiple dye-labeled probes. Intact probes are short oligonucleotides with quencher dye at one end that absorbs the signal from fluorescent reporter dye at the opposite end. During PCR cooling cycles, probes bind to a specific area within the targeted fragment. During extension, DNA polymerase encounters the probe in its path and breaks the probe apart. This releases the reporter dye, resulting in increased fluorescent signal [5]. In multiplex reactions such as in this test kit, each species specific probe is labeled with a different fluorescent reporter dye, allowing independent detection of the presence or absence of each target. The BAX® system Q7 instrument uses multiple filters to measure specific signal resulting from the presence of each target at the end of each cycle and report results for the presence or absence of *Vibrio cholera*, *vulnificus*, or *parahaemolyticus* in less than 90 minutes.

DISCUSSION OF THE VALIDATIN STUDY (1)

In initial development studies, some enriched samples were found to test positive by the BAX® pcr assay but negative by the reference culture method. Often, this is the case when non-target competitive flora, either non-Vibrio, or non-target Vibrio species are present in an enrichment with cell densities at a much higher level than the target organism. In such cases, an additional plating media, CHROMagar Vibrio, has been found to be useful. For each sample tested for most studies (with the exception of the oyster studies performed at Dauphin Island), a CHROMagar Vibrio plate was also struck from each enriched sample to reflect this fact. In one study (the naturally contaminated frozen raw shrimp work) two samples were found to be pcr positive/culture negative. For these samples that tested pcr positive, but from which no confirmed colonies of a positive species were found from the FDA-BAM media, more colonies than required by the FDA BAM procedure were picked from the TCBS, mCPC and CHROMagar Vibrio plates into cluster tubes containing 500 µl APW (up to 24 per sample per media where available). Individual isolates were allowed to grow in the cluster tubes overnight at room temperature and tested by BAX® assay. Presumptive positive cluster tubes were struck onto TCBS or T₁N₃ agar and confirmed using the FDA-BAM methods. Both of these samples were then found to be positive using this enhanced protocol, yielding at least one confirmed V. cholera isolate. Qualicon has also demonstrated the presence of atypical V. parahaemolyticus strains (confirmed by DNA sequence-based characterization) that do not present with typical characteristics on Vibrio selective and differential agars. All enrichments which tested positive by PCR, with the exception of two MPN tubes from the oyster study, were also positive for typical confirmed colonies on one or more of the three agars above. In the oyster studies, only three typical colonies per MPN tube were selected as per the FDA-BAM protocols, and a greater number of colonies selected per tube would have made the experiment unmanageable. This highlights a potential issue with the reference method in that typical colony morphology on plates is a critical step in the reference method and the complex microbial ecology of an oyster can potentially lead to less than optimal results when non-target isolates with a typical phenotype on Vibrio selective agars are present in significant numbers relative to the levels of target Vibrio. In other non-AOAC studies conducted at Qualicon some instances of PCR positive enrichments have yielded phenotypically atypical isolates that test positive by PCR. These isolates have been characterized by sequence-based identification (microSeq *, Applied Biosystems, Foster City, CA) as target Vibrio species and are being shared with the community of Vibrio experts for further characterization (data not shown). The above described work supports continued work on the natural phenotypic and genetic variation of pathogenic species of Vibrio occurring in foods.

Table 1. BAX vs. Reference	e Results for Presence/Absence Te	sting (1)						
Sample type	MPN or Spike Level	Samples	BAX	BAX	Reference	Sensitivity ¹	Specificity ²	Chi
			pos	Confirmed	pos			Square ³
Tuna	0.5 MPN/25g (V. cholerae)	20	3	3	3	100%	100%	-
	1.9 MPN/25g (V. cholerae)	20	13	13	13	100%	100%	-
	3.75 MPN/25g (V.	20	19	19	19	100%	100%	-
	cholerae)							
	0 cfu/25g	5	0	0	0		100%	
Tuna (Independent	6 MPN/25g (V. cholerae)	20	9	9	9	100%	100%	-
Laboratory)								
	0 cfu/25g	5	0	0	0		100%	
Frozen raw shrimp	Naturally contaminated	20	5	5	5	100%	100%	-
	(V. cholerae)							

¹ Sensitivity - Total number of confirmed positive test portions by the method divided by total number of confirmed positive test portions by both the alternative and reference methods.

³ McNemar Chi-Square test statistic used for calculating significance of results

Table 2. BAX Systen	n Results for S	amples with	Presence/Ab	sence and N	1PN Testing (1)			
	Presence/	Absence in 2!	5g sample		MPN (3	3 tube, 3 dilution – 1g	0.1g, 0.01g)	
Sample type	Inoculation level	BAX positive / confirmed	Reference positive / confirmed	Sample	BAX positive (1g 0.1g, 0.01g)	, Reference positive (1g, 0.1g, 0.01g)	BAX MPN ¹	Reference MPN ¹
				1	1, 0, 0	1, 0, 0	0.36/g	0.36/g
Cooked shrimp				2	1, 0, 0	1, 0, 0	0.36/g	0.36/g
(V.	1.8 cfu/g	5/5	5/5	3	1, 0, 0	1, 0, 0	0.36/g	0.36/g
parahaemolyticus)				4	1, 0, 0	1, 0, 0	0.36/g	0.36/g
				5	1, 0, 0	1, 0, 0	0.36/g	0.36/g
				1	2, 0, 0	2, 0, 0	0.92/g	0.92/g
Cooked shrimp				2	2, 2, 0	2, 2, 0	2.1/g	2.1/g
(V.	18 cfu/g	5/5	5/5	3	2, 0, 0	2, 0, 0	0.92/g	0.92/g
parahaemolyticus)				4	3, 0, 0	3, 0, 0	2.3/g	2.3/g
				5	2, 1, 0	2, 1, 0	1.5/g	1.5/g
				1	1, 0, 0	1, 0, 0	0.36/g	0.36/g
Caallana				2	0, 0, 0	0, 0, 0	<0.3/g	<0.3/g
Scallops (V. vulnificus)	1.4 x 10 ⁴ cfu/{	g 5/5	5/5	3	2, 0, 0	2, 0, 0	0.92/g	0.92/g
(v. vaiiiijicus)				4	0, 0, 0	0, 0, 0	<0.3/g	<0.3/g
				5	0, 0, 0	0, 0, 0	<0.3/g	<0.3/g

¹ MPN values determined using the FDA-BAM MPN tables.

² Specificity - Total number of analyzed negative test portions by the method divided by total number of confirmed negative test portions by both the alternative and reference methods.

Table 3. BAX	System Results for Oysters with MPN Testing <i>V. parahaemo</i>	olyticus (3 tube, 8 dilution) (1)		
Sample Set	BAX positive (10g, 1g, 10 ⁻¹ , 10 ⁻² , 10 ⁻³ , 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶)	Reference positive (10g, 1g, 10 ⁻¹ , 10 ⁻² , 10 ⁻³ , 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶)	BAX MPN ¹	Reference
3°C	3, 3, 3, 1, 0, 0, 0, 0	3, 3, 3, 1, 0, 0, 0, 0	42 MPN/g	42 1
25°C	3, 3, 3, 3, 3, 3, 2	3, 3, 3, 3, 3, 3, 2	1.1 X 10 ⁶ MPN/g	1.1 X 1
35°C	3, 3, 3, 3, 3, 3, 3	3, 3, 2, 3, 3, 3, 3, 3	>1.1 X 10 ⁶ MPN/g	>1.1 X 1

¹ MPN values determined using the FDA-BAM MPN tables.

^{*}An MPN of 3,3,3 for the Reference MPN was used for the 10-4, 10-5 and 10-6 replicates. This MPN calculation assumes that the one 10-1 g MPN tube from which no confirmed *V. parahaemolyticus* strain was recovered was a failure to pick a true typical isolate present in the background of non-*V. parahaemolyticus* which exhibited typical morphology for the target. Since all three replicates for the MPN tubes up to 5 orders of magnitude more dilute than the 10-1 tube were culture confirmed, it is unlikely that the culture result from this one discordant tube was correct..

Table 4. I	BAX System Results for Oysters with MPN Testing V. 1	vulnificus (3 tube, 8 dilution) (1)		
Sample	BAX positive (10g, 1g, 10 ⁻¹ , 10 ⁻² , 10 ⁻³ , 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁶)	Reference positive (10g, 1g, 10 ⁻¹ , 10 ⁻² , 10 ⁻³ , 10 ⁻⁴ , 10 ⁻⁵ , 10 ⁻⁵	BAX MPN ¹	Reference MPN ¹
Set		6)		
3°C	3, 3, 1, 0, 0, 0, 0, 0	3, 3, 1, 0, 0, 0, 0, 0	4.6 MPN/g	4.6 MPN/g
25°C	3, 3, 3, 3, 1, 0, 0	3, 3, 3, 3, 1, 0, 0	4,200 MPN/g	4,200 MPN/g
35°C	3, 3, 3, 3, 3, 2, 0, 1	3, 2, 3, 3, 3, 2, 0, 1	14,000 MPN/g	14,000 MPN/g *

¹ MPN values determined using the FDA-BAM MPN tables

^{*} An MPN of 2,0,1 for the Reference MPN was used for the 10-4, 10-5 and 10-6 replicates. This MPN calculation assumes that the one 1 g MPN tube from which no confirmed *V. vulnificus* strain was recovered was a failure to pick a true typical isolate present in the background of non-*V. vulnificus* which exhibited typical morphology for the target. Since all three replicates for the MPN tubes up to 3 orders of magnitude more dilute than the 10-1 tube were culture confirmed, it is unlikely that the culture result from this one discordant tube was correct.

	Target Level by MPN or	Samples or		Reference	,			
Sample type	cfu per 25 gram	Number of MPN Tubes	BAX pos	pos	Sensitivity % ¹	Specificity % ²	False Pos % ³	False
Tuna	0.5 MPN/25g	20	3	3	100	100	0	
	1.9 MPN /25g	20	13	13	100	100	0	
	3.75 MPN /25g	20	19	19	100	100	0	
	0 cfu/25g	5	0	0		100	0	
Tuna (Independent Laboratory Study)	MPN/25g	20	9	9	100	100	0	
	0 cfu/25g	5	0	0		100	0	
Frozen raw shrimp	Naturally contaminated	20	5	5	100	100	0	
Cooked shrimp (MPN)	1.8 cfu/g	45	5	5	100	100	0	
Cooked shrimp (25g)	1.8 cfu/g	5	5	5	100		0	
Cooked shrimp (MPN)	18 cfu/g	45	14	14	100	100	0	
Cooked shrimp (25g)	18 cfu/g	5	5	5	100		0	
Frozen Scallops (MPN)	1.4 x 10⁴ cfu/g	45	3	3	100	100	0	
Frozen Scallops (25g)	1.4 x 10⁴ cfu/g	5	5	5	100		0	
Oysters 3°C	Naturally contaminated	24	10	10	100	100	0	
Oysters 25°C Abuse	_	24	23	23	100	100	0	
Oysters 35°C Abuse	V. parahaemolyticus	24	24	23	100	96	4	
Oysters 3°C	Naturally contaminated	24	7	7	100	100	0	
Oysters 25°C Abuse	-	24	16	16	100	100	0	
Oysters 35°C Abuse	V. vulnificus	24	18	17	100	94	6	

¹ Sensitivity - Total number of confirmed positive test portions by the method divided by total number of confirmed positive test portions by both the alternative and reference methods.

² Specificity - Total number of analyzed negative test portions by the method divided by total number of confirmed negative test portions by both the alternative and reference methods.

³ False negative rate is calculated as BAX (-) Ref (+) BAX enrichment samples / Tot Ref (+) samples

⁴ False positive rate is calculated as BAX (+) Ref (-) / Tot Ref (-) samples

⁵ McNemar Chi-Square test statistic used for calculating significance of results

Table 6. Inclusivi	ty Results for Vil	orio cholerae/	parahaemolyt	ticus/vulnificus (1)		l	I
	Other strain		Location		Result <i>V.</i>	Result <i>V.</i>	Result V
Strain ID	designation	Source	of testing	Species (serotype)	cholera	parahaemolyticus	
VcJVY212		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcJVB52		Unknown	UF	V. cholerae	Pos	Neg	Neg
Vc5439/62		Unknown	UF	V. cholerae	Pos	Neg	Neg
Vc569B		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcS171		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcNAG12		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcATCC25874		Unknown	UF	V. cholerae	Pos	Neg	Neg
Vc8		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcB1307 Dacca		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcA5		Unknown	UF	V. cholerae	Pos	Neg	Neg
VcI10		Unknown	UF	V. cholerae	Pos		
		Unknown	UF	V. cholerae	Pos	Neg	Neg
Vc646 Ogawa01		Unknown	UF	v. crioierae	P05	Neg	Neg
Vc395 Classical		Unknown	UF	V. cholerae	Pos	Nog	Nog
Ogawa01 TD3192				V. cholerae		Neg	Neg
TD7000	ATCC 0450	Unknown	Qualicon	V. cholerae	Pos	Neg	Neg
DD9892	ATCC 9459	Unknown	Qualicon	V. cholerae	Pos	Neg	Neg
DD13084		Unknown	Qualicon	V. cholerae	Pos	Neg	Neg
TD3161	ATCC 14035	Unknown	Qualicon	V. cholerae (non-O1,	Pos	Neg	Neg
103101		Unknown	Qualicon	0139)	Pos	Neg	Neg
TD3162				V. cholerae (non-O1,		_	
TD2462		Unknown	Qualicon	0139)	Pos	Neg	Neg
TD3163		Unknown	Qualicon	V. cholerae (non-01, 0139)	Pos	Neg	Neg
TD3164				V. cholerae (non-O1,			
		Unknown	Qualicon	0139)	Pos	Neg	Neg
TD3165		Unknown	Qualicon	V. cholerae (non-01, 0139)	Pos	Neg	Neg
TD3167		OTIKITOWIT	Qualicon	V. cholerae (non-O1,	103	Neg	iveg
		Unknown	Qualicon	0139)	Pos	Neg	Neg
TD3170		University	Oveliere	V. cholerae (non-01,	D	Non	Nas
TD3171		Unknown	Qualicon	O139) V. cholerae (non-O1,	Pos	Neg	Neg
.501/1		Unknown	Qualicon	0139)	Pos	Neg	Neg
TD3173				V. cholerae (non-01,			
TD3180		Unknown	Qualicon	O139) V. cholerae O1	Pos	Neg	Neg
		Unknown	Qualicon		Pos	Neg	Neg
TD3183		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3185		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3186		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3187		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3858		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3859		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3860		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3861		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3862		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3863		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3864		Unknown	Qualicon	V. cholerae O1	Pos	Neg	Neg
TD3203		Unknown	Qualicon	V. cholerae O139	Pos	Neg	Neg
TD3211		Unknown	Qualicon	V. cholerae O139	Pos	Neg	Neg
TD3213		Unknown	Qualicon	V. cholerae O139	Pos	Neg	Neg
	1	1		V. cholerae O139			i - 0

VpTx2103		Unknown	UF	V. parahaemolyticus	Neg	Pos	Neg
VpTx3547		Unknown	UF	V. parahaemolyticus	Neg	Pos	Neg
VpDAL1094		Unknown	UF	V. parahaemolyticus	Neg	Pos	Neg
Vp17802		Unknown	UF	V. parahaemolyticus	Neg	Pos	Neg
Vp43996		Unknown	UF	V. parahaemolyticus	Neg	Pos	Neg
DD2633	ATCC 17802	Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3129		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3130		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3131		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3132		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3133		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3134		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3135		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3153		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3154		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3155		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3156		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3157		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3159		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
TD3160		Unknown	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
Vv FLA141		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VV FLA141		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA134		Unknown	UF	V. vulnificus	Neg	Neg	Pos
Vv Fla 129		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA127		Unknown	UF	V. vulnificus			Pos
VVFLA127 VvFLA135		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VVFLA133		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA113		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvB3-313/98		Unknown	UF	V. vulnificus	Neg Neg	Neg Neg	Pos
VvFLA121		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VVFLA121		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvB3-302/99		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA119		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA116		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA102		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvB2-2		Unknown	UF	V. vulnificus	Neg	Neg	Pos
VvFLA108		Unknown	UF	V. vulnificus	Neg		Pos
TD3121		Unknown	Qualicon	V. vulnificus	Neg	Neg Neg	Pos
TD3148		Unknown	Qualicon	V. vulnificus	Neg	Neg	Pos
TD3149			Qualicon	V. vulnificus			Pos
TD3204		Unknown Unknown		V. vulnificus	Neg	Neg	
TD3207		Unknown	Qualicon Qualicon	V. vulnificus	Neg	Neg	Pos
TD3208		Unknown	Qualicon	V. vulnificus	Neg	Neg	
TD3210				V. vulnificus	Neg	Neg	Pos Pos
TD3212		Unknown	Qualicon	V. vulnificus	Neg	Neg	
TD3217		Unknown	Qualicon	V. vulnificus	Neg	Neg	Pos
TD3219		Unknown	Qualicon	V. vulnificus	Neg	Neg	Pos
TD4527	ATCC 275C2	Unknown	Qualicon	V. vulnificus	Neg	Neg	Pos
DD13082	ATCC 27562 ATCC BAA-86	Unknown	Qualicon	V. vulnificus	Neg	Neg	Pos
	30 2.01 00	Unknown	Qualicon	_	Neg	Neg	Pos
DD13231		Shrimp	Qualicon	V. cholera	Pos	Neg	Neg
DD13232		Shrimp	Qualicon	V. cholera	Pos	Neg	Neg
DD13208		Shrimp Shrimp	Qualicon Qualicon	V. cholera V. cholera	Pos Pos	Neg Neg	Neg Neg

DD13212	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13216	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13217	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13218	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13211	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13222	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13223	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13224	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13225	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13226	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13228	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13229	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13230	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13233	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13234	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13235	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13236	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13204	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13207	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13200	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13202	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13201	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13203	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13211	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13214	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13215	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13210	Shrimp	Qualicon	V. parahaemolyticus	Neg	Pos	Neg
DD13205	Shrimp	Qualicon	V. vulnificus	Neg	Neg	Pos
DD13206	Shrimp	Qualicon	V. vulnificus	Neg	Neg	Pos
DD13227	Shrimp	Qualicon	V. vulnificus	Neg	Neg	Pos
DD13213	Shrimp	Qualicon	V. vulnificus	Neg	Neg	Pos

Table 7. Inclus	sivity Results for Vib	orio cholerae/	parahaemolyticus/vulnificu	s (1)		
Strain ID	Other strain designation	Source	Species	Result V. cholera	Result V. parahaemolyticus	Result V. vulnificus
DD2558	J	Unknown	Citrobacter freundii	Neg	Neg	Neg
DD383		Unknown	Citrobacter freundii	Neg	Neg	Neg
DD2560		Unknown	Citrobacter kosei	Neg	Neg	Neg
DD2561		Unknown	Citrobacter kosei	Neg	Neg	Neg
DD12835		Unknown	E. coli O157:H7	Neg	Neg	Neg
DD1450		Unknown	E. coli O157:H7	Neg	Neg	Neg
DD1979		Unknown	E. coli O157:H7	Neg	Neg	Neg
TD8136		Unknown	E. coli O157:H7	Neg	Neg	Neg
DD2554		Unknown	Enterococcus faecalis	Neg	Neg	Neg
DD6523		Unknown	Klebsiella oxytoca	Neg	Neg	Neg
DD2546		Unknown	Klebsiella pneumoniae	Neg	Neg	Neg
DD1144		Unknown	Listeria monocytogenes	Neg	Neg	Neg
DD1283			Listeria monocytogenes			•
		Unknown		Neg	Neg	Neg
DD1309		Unknown	Listeria monocytogenes	Neg	Neg	Neg
DD3572	ATCC 9459	Unknown	Listeria innocua	Neg	Neg	Neg

DD3376		Unknown	Listeria ivanovii	Neg	Neg	Neg
DD2874	ATCC 14035	Unknown	Listeria seeligeri	Neg	Neg	Neg
DD3354		Unknown	Listeria welshimeri	Neg	Neg	Neg
DD3411		Unknown	Listeria welshimeri	Neg	Neg	Neg
DD2357		Unknown	Proteus mirabilis	Neg	Neg	Neg
DD374		Unknown	Proteus mirabilis	Neg	Neg	Neg
DD13148			Pseudomonas			
		Unknown	aeruginosa	Neg	Neg	Neg
DD3982			Pseudomonas			
		Unknown	aeruginosa	Neg	Neg	Neg
DD3019		Unknown	Salmonella ser. Dublin	Neg	Neg	Neg
DD706		Unknown	Salmonella ser. Enteritidis	Nog	Nog	Nog
DD1261		Ulikilowii	Salmonella ser.	Neg	Neg	Neg
DD1201		Unknown	Newport	Neg	Neg	Neg
DD13060			Salmonella ser.	J	J	
		Unknown	Senftenburg	Neg	Neg	Neg
DD586			Salmonella ser.			
DD4003		Unknown	Typhimurium	Neg	Neg	Neg
DD1083		Unknown	Shigella flexneri	Neg	Neg	Neg
DD699		Unknown	Shigella soneii	Neg	Neg	Neg
DD10156		Unknown	Staphylococcus aureus	Neg	Neg	Neg
DD7426		Unknown	Staphylococcus aureus	Neg	Neg	Neg
DD9775		Unknown	Staphylococcus aureus	Neg	Neg	Neg
DD11233		Unknown	Vibrio alginolyticus	Neg	Neg	Neg
TD3146		Unknown	Vibrio alginolyticus	Neg	Neg	Neg
TD3195		Unknown	Vibrio alginolyticus	Neg	Neg	Neg
TD3200		Unknown	Vibrio alginolyticus	Neg	Neg	Neg
TD3658		Unknown	Vibrio alginolyticus	Neg	Neg	Neg
TD4501		Unknown	Vibrio anguillarum	Neg	Neg	Neg
TD4498		Unknown	Vibrio carchariae	Neg	Neg	Neg
TD3194		Unknown	Vibrio damsela	Neg	Neg	Neg
TD4524		Unknown	Vibrio damsela	Neg	Neg	Neg
DD2631		Unknown	Vibrio fluvialis	Neg	Neg	Neg
TD4526		Unknown	Vibrio fluvialis	Neg	Neg	Neg
TD4497		Unknown	Vibrio harveyi	Neg	Neg	Neg
DD11232		Unknown	Vibrio mimicus	Neg	Neg	Neg
DD13083		Unknown	Vibrio mimicus	Neg	Neg	Neg
TD3137	ATCC 17802	Unknown	Vibrio mimicus	Neg	Neg	Neg
TD3147		Unknown	Vibrio mimicus	Neg	Neg	Neg
TD3216		Unknown	Vibrio mimicus	Neg	Neg	Neg
TD4500		Unknown	Vibrio natriegens	Neg	Neg	Neg
TD4528		Unknown	Vibrio pelagia	Neg	Neg	Neg
TD4523		Unknown	Vibrio tubiashii	Neg	Neg	Neg
DD2399		Unknown	Yersinia aldovae	Neg	Neg	Neg
DD592		Unknown	Yersinia enterocolitica	Neg	Neg	Neg

DISCUSSION OF JULY 2013 MODIFICATION (5)

The results of the method comparison between the digital DuPont™ Thermal Block and the analog heating/cooling blocks are provided in Table 3 below. For all sample types and BAX® System assays evaluated, the results for samples processed with the DuPont™ Thermal Block and the original heating/cooling blocks demonstrated no significant statistical difference as indicated by POD analysis (the 95% confidence interval of the dPOD included 0 in all cases). For additional figures illustrating the target responses of the individual BAX® System assays, see Appendix B.

All 544 samples inoculated with high levels of the target organism returned positive results with the BAX® System using both sample preparation methods, and all 544 samples tested as unspiked negative controls returned negative results with the BAX® System using both sample preparation methods with the exception of the non-inoculated poultry rinse samples that gave positive results for Campylobacer jejuni, while giving negative results for the target C. coli that was spiked into the test samples. For samples inoculated with low levels of target organism, the two preparation methods returned identical results for 530 of the 544 samples tested. The results for the 14 samples that returned different results between the two methods are summarized in Table 3. Because the low-spike samples were tested at levels near the limit of detection for the BAX® System assays, some discrepancy between the two methods is expected based on factors such as the distribution of the target organism within the sample.

Analysis of target response in cases where a fractional response was not generated, while demonstrating significant differences from a statistical standpoint in some cases, were not indicative of any difference that would likely be significant in a practical sense. All average differences were less than 10% for melt curve based target peak height, or target peak area to target plus internal control peak areas (for the Yeast and Mold assay) and all average Ct differences were less than 1 for all real time assay.

Because the difference in results between the two methods demonstrated no significant statistical difference as indicated by the POD analysis, these differences are found to be acceptable in this study for demonstrating equivalency between the two methods.

BAX®	Sample	Spike	Test	Hea	ting/Coolin	g Blocks	C	uPont™ Therm	nal Block	dPOD _{TB} ^d	95% CI°
System Assay	Туре	Level	Portions	Х ^а	POD _{2B} ^b	95% CI ^e	Хª	POD _{TB} ^c	95% CI ^e		
Real-time		High	17	17	1	0.82,1.0	17	1	0.82, 1.0	0	0.18, 0.18
Vibrio cholerae/		Low	17	17	1	0.82,1.0	17	1	0.82, 1.0	0	0.18, 0.18
parahaemol yticus/ vulnificus	Shrimp	Control	17	0	0	0 ,0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82,1.0	17	1	0.82, 1.0	0	0.18, 0.18
	Scallops	Low	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	0.18, 0.18
		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	0.18, 0.18
	Ahi tuna	Low	17	3	0.18	0.062, 0.41	4	0.24	0.10, 0.47	0.059	032, 0.21
		Control	17	0	0	0, 0.19	0	0	0, 0.19	0	-0.19, 0.19
		High	17	17	1	0.82, 1.0	17	1	0.82, 1.0	0	0.18, 0.18

REFERENCES CITED

- 1. Dambaugh, T., Wright, A, Kingsley, M., Malota, C., Andealoro, B., Fallon, D., Delduco, D., Tice, G., and Wallace, M., Evaluation of the DuPont™ BAX® System Real-Time PCR Assay for *Vibrio cholera, parahaemolyticus,* and *vulnificus,* AOAC® *Performance Tested*™ certification number 050902.
- 2. Feldstine, P., Abeyta, C., & Andrews, W.H. (2002) AOAC International Committee Guidelines for Validation of Qualitative and Quantitative Food Microbiological Official Methods of Analysis. AOAC INTERNATIONAL
- 3. Innis, M.A., & Gelfand, D.H. (1989) PCR Protocols: A Guide to Methods and Applications, Academic Press, Burlington, MA
- 4. U.S. Food and Drug Administration, FDA Bacteriological Analytical Manual, http://www.cfsan.fda.gov/~ebam/bam-9.html, date of access 2/15/09.
- Hoelzer, S., Wallace, F.M., Fleck, L, DiCosimo, D., Harris, J., Andaloro, B., Farnum, A., Davis, E., and Rohrbeck, J., Evaluation of the DuPont[™] Thermal Block for Automated Sample Lysis with the BAX® System Method (Minor Modification), AOAC® Performance Tested[™] certification number 010902. Approved July 2013.